Виды энергии – известные человечеству типы энергии. Энергия: потенциальная и кинетическая энергия

Церковные праздники

    Назовите основные этапы в истории использования энергии человеком, укажите их значение.

    Какая связь между развитием цивилизации человечества и энергопотреблением? Объясните характер их изменения во времени и укажите тенденции.

    Что такое энергетическая система? Ее основное назначение. Какие системы в ней функционируют?

    Что представляют собой топливно-энергетические ресурсы? Как они классифицируются?

    Что такое вторичные энергетические ресурсы? Назовите их и укажите способы их получения.

    Что такое энергоемкость первичных энергоресурсов? Для чего введено понятие условного топлива?

    Каковы основные тенденции мирового потребления ТЭР?

    В чем суть энергетического кризиса 70-х гг. в Западной Европе и в 90-х гг. в странах СНГ? Какие Вы видите пути преодоления энергетического кризиса в Беларуси?

    Чем можно объяснить интенсивное использование нефти в мировом энергобалансе и каковы дальнейшие перспективы ее использования?

    Поясните возможности и перспективы использования водорода в энергетике.

    Что такое энергоэффективные технологии? Каковы мотивы их внедрения?

Тема 2. Виды энергии. Получение, преобразование и использование энергии Лекция 2. Виды энергии. Получение, преобразование и использование энергии

Основные понятия:

энергия; кинетическая и потенциальная энергия; виды энергии; энергетика; энергосистема; электроэнергетическая система; потребители энергии; традиционная и нетрадиционная энергетика; графики нагрузки; энергопотребление на душу населения; энергоемкость экономики; показатель энергоэкономического уровня производства .

Энергия и ее виды

Энергия – всеобщая основа природных явлений, базис культуры и всей деятельности человека. В то же время под энергией (греческое –действие, деятельность )понимается количественная оценка различных форм движения материи, которые могут превращаться одна в другую .

Согласно представлениям физической науки, энергия –это способность тела или системы тел совершать работу. Существуют различные классификации видов и форм энергии. Человек в своей повседневной жизни наиболее часто встречается со следующими видами энергии: механическая, электрическая, электромагнитная, тепловая, химическая, атомная (внутриядерная). Последние три видаотносятся к внутренней форме энергии, т.е. обусловлены потенциальной энергией взаимодействия частиц, составляющих тело, или кинетической энергией их беспорядочного движения.

Если энергия – результат изменения состояния движения материальных точек или тел, то она называется кинетической ; к ней относят механическую энергию движения тел, тепловую энергию, обусловленную движением молекул.

Если энергия – результат изменения взаимного расположения частей данной системы или ее положения по отношению к другим телам, то она называется потенциальной ; к ней относят энергию масс, притягивающихся по закону всемирного тяготения, энергию положения однородных частиц, например, энергию упругого деформированного тела, химическую энергию.

Энергию в естествознании в зависимости от природы делят на следующие виды.

Механическая энергия – проявляется при взаимодействии, движении отдельных тел или частиц.

К ней относят энергию движения или вращения тела, энергию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах – транспортных и технологических.

Тепловая энергия – энергия неупорядоченного (хаотического) движения и взаимодействия молекул веществ.

Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопления, проведения многочисленных технологических процессов (нагревания, плавления, сушки, выпаривания, перегонки и т.д.).

Электрическая энергия энергия движущихся по электрической цепи электронов (электрического тока).

Электрическая энергия применяется для получения механической энергии с помощью электродвигателей и осуществления механических процессов обработки материалов: дробления, измельчения, перемешивания; для проведения электрохимических реакций; получения тепловой энергии в электронагревательных устройствах и печах; для непосредственной обработки материалов (электроэрозионная обработка).

Химическая энергия это энергия, «запасенная» в атомахвеществ, которая высвобождается или поглощается при химических реакциях между веществами.

Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальванических элементах и аккумуляторах. Эти источники энергии характеризуются высоким КПД (до 98%), но низкой емкостью.

Магнитная энергия – энергия постоянных магнитов, обладающих большим запасом энергии, но «отдающих» ее весьма неохотно. Однако электрический ток создает вокруг себя протяженные, сильные магнитные поля, поэтому чаще всего говорят об электромагнитной энергии.

Электрическая и магнитная энергии тесно взаимосвязаны друг с другом, каждую из них можно рассматривать как «оборотную» сторону другой.

Электромагнитная энергия – это энергия электромагнитных волн, т.е. движущихся электрического и магнитного полей. Она включает видимый свет, инфракрасные, ультрафиолетовые, рентгеновские лучи и радиоволны.

Таким образом, электромагнитная энергия – это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия – энергия, локализованная в ядрах атомов так называемых радиоактивных веществ. Она высвобождается при делении тяжелых ядер (ядерная реакция) или синтезе легких ядер (термоядерная реакция).

Бытует и старое название данного вида энергии – атомная энергия, однако это название неточно отображает сущность явлений, приводящих к высвобождению колоссальных количеств энергии, чаще всего в виде тепловой и механической.

Гравитационная энергия – энергия, обусловленная взаимодействием (тяготением) массивных тел, она особенно ощутима в космическом пространстве. В земных условиях, это,например, энергия, «запасенная» телом, поднятым на определенную высоту над поверхностью Земли – энергия силы тяжести.

Таким образом, в зависимости от уровня проявления, можно выделить энергию макромира – гравитационную, энергию взаимодействия тел – механическую, энергию молекулярных взаимодействий – тепловую, энергию атомных взаимодействий – химическую, энергию излучения – электромагнит ную, энергию, заключенную в ядрах атомов – ядерную.

Современная наука не исключает существование и других видов энергии, пока не зафиксированных, но не нарушающих единую естественнонаучную картину мира и понятие об энергии.

В Международной системе единиц СИ в качестве единицы измерения энергии принят 1 Джоуль (Дж). 1 Дж эквивалентен 1 ньютон метр (Нм). Если расчеты связаны с теплотой, биологической и многими другими видами энергии, то в качестве единицы энергии применяется внесистемная единица - калория (кал) или килокалория (ккал), 1кал=4,18 Дж. Для измерения электрической энергии пользуются такой единицей, как Ватт·час (Вт·ч, кВт·ч, МВт·ч), 1 Вт·ч=3,6 МДж. Для измерения механической энергии используют величину 1 кг·м=9,8 Дж.

Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная), и которая может быть преобразована в электрическую, тепловую, механическую, химическую называетсяпервичной . В соответствии с классификацией энергоресурсов по признаку исчерпаемости можно классифицировать и первичную энергию. На рис. 2.1 представлена схема классификации первичной энергии.

Рис. 2.1. Классификация первичной энергии

При классификации первичной энергии выделяют традиционные инетрадиционные виды энергии. К традиционным относятся такие виды энергии, которые на протяжении многих лет широко использовались человеком. К нетрадиционным видам энергии относят такие виды, которые начали использоваться сравнительно недавно.

К традиционным видам первичной энергии относят: органическое топливо (уголь, нефть и т.д.), гидроэнергию рек и ядерное топливо (уран, торий и др.).

Энергия, получаемая человеком, после преобразования первичной энергии на специальных установках - станциях, называется вторичной (электрическая энергия, энергия пара, горячей воды и т.д.).

Преимущества электрической энергии. Электрическая энергия является наиболее удобным видом энергии и по праву может считаться основой современной цивилизации. Подавляющее большинство технических средств механизации и автоматизации производственных процессов (оборудование, приборы ЭВМ), замена человеческого труда машинным в быту имеют электрическую основу.

Немногим более половины всей потребляемой энергии используется в виде тепла для технических нужд, отопления, приготовления пищи, оставшаяся часть - в виде механической, прежде всего в транспортных установках, и электрической энергии. Причем доля электрической энергии с каждым годом растет (рис. 2.2).

Электрическая энергия – более универсальный вид энергии. Она нашла широкое применение в быту и во всех отраслях народного хозяйства. Насчитывается свыше четырехсот наименований электробытовых приборов: холодильники, стиральные машины, кондиционеры, вентиляторы, телевизоры, магнитофоны, осветительные приборы и т.д. Нельзя представить промышленность без электрической энергии. В сельском хозяйстве применение электричества непрерывно расширяется: кормление и поение животных, уход за ними, отопление и вентиляция, инкубаторы, калориферы, сушилки и т.д.

Электрификация – основа технического прогресса любой отрасли народного хозяйства. Она позволяет заменить неудобные для использования энергетические ресурсы универсальным видом энергии – электрической энергией, которую можно передавать на любое расстояние, превращать в другие виды энергии, например, в механическую или тепловую, делить ее между потребителями.Электричество – очень удобный для применения и экономичный вид энергии.

Рис. 2.2. Динамика потребления электрической энергии

Электрическая энергия обладает такими свойствами, которые делают ее незаменимой в механизации и автоматизации производства и вповседневной жизни человека:

1. Электрическая энергия универсальна, она может быть использована для самых различных целей. В частности, ее очень просто превратить в тепло. Это делается, например, в электрических источниках света (лампочках накаливания), в технологических печах, используемых в металлургии, в различных нагревательных и отопительных устройствах. Превращение электрической энергии в механическую используется в приводах электрических моторов.

2. При потреблении электрической энергии ее можно бесконечно дробить. Так, мощность электрических машин в зависимости от их назначения различна: от долей ватта в микродвигателях, применяемых во многих отраслях техники и в бытовых изделиях, до огромных величин, превышающих миллион киловатт, в генераторах электростанций.

3. В процессе производства и передачи электрической энергии, можно концентрировать ее мощность, увеличивать напряжение и передавать по проводам как на малые, так и на большие расстояния любое количество электрической энергии от электростанции, где она вырабатывается, всем ее потребителям.

Система измерения теплоты два века назад базировалась на представлении о том, что тепловая энергия сохраняется, никуда не пропадает, а только переходит из одного места в другое. Мы до сих пор пользуемся следующими правилами: Для измерения количества тепла заставим его...

Виды энергии – известные человечеству типы энергии

Понятие «энергия» определяется как мера различных форм движения материи и как мера перехода движения материи из одной формы в другую. Соответственно, виды и типы энергии различают по формам движения материи. Челочек имеет дело с различными видами энергии. По сути, весь технологический процесс есть преобразование одних видов энергии в другие. В процессе прохождения технологического тракта энергия многократно преобразуется из одного вида в другой, что ведет к уменьшению ее полезного количества из-за потерь и рассеяния в окружающей среде.

Типы энергии известные сегодня

  • Механическая
  • Электрическая
  • Химическая
  • Тепловая
  • Световая (Лучистая)
  • Ядерная (Атомная)
  • Термоядерная (Термоядерного синтеза)
Кроме того, нам известны и другие виды энергии, названия которых имеют не физический, а описательный смысл, такие как ветровая энергия, или геотермальная энергия. В подобных случаях физическая форма характера энергии подменяется названием ее источника. Поэтому правильно говорить скорее о механической энергии ветра, энергии потока ветра, или тепловой энергии геотермальных источников. В противном случае, количество псевдо энергий можно будет плодить до бесконечности, выдумывая мусорную энергию, водородную энергию, ментальную энергию, или жизненную энергию, и энергию рук. Сочетая слово «энергия» с конкретными объектами мы лишаем эту связку физического смысла. Невозможно измерить количество психической энергии, или энергии воли. Остается лишь намек, что предмет имеет какую-то энергию, а какую – нам неизвестно. Налицо оказывается замусоривание текста или речи словом, не несущим смысловой нагрузки, ведь каждый предмет несет энергию и упоминать об этом бессмысленно. А по аналогии с энергией мысли должна появиться масса мысли, длина, ширина и высота мысли, а также ее плотность. Короче говоря, такие обороты – очевидное свидетельство глупости и неграмотности автора, или оратора.

Физические понятия, связанные с определением слова «энергия»

Но вернемся к реальным физическим понятиям, связанным с определением слова «энергия». Выше перечисленные типы энергии известны человеку и использовались им на протяжении всей истории цивилизации. Исключение составляет разве что энергия атомного распада, полученная лишь в начале 20-го века. Так, механическую энергию мы используем до сих пор, катаясь на велосипеде, используя маятниковые часы, поднимая и опуская грузы краном. Электрическая энергия знакома нам издревле в виде молний и статического электричества. Однако широко этот тип энергии стал применяться лишь с 19 века, когда были изобретены Вольтов столб – батарея постоянного тока и . Однако и в древности люди знали и использовали этот вид энергии, хотя и не повсеместно. Известны древнеегипетские украшения и предметы культа, покрытие которых могло быть выполнено только электролизом. — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода. Сегодня высокотехнологичное «горение» осуществляется в и , в и . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – . К большому сожалению, к.п.д. тепловых машин невелик, причем ограничения накладывает не материал, а теория. Для предел равен 40%. На основе химических взаимодействий, химической энергии действуют и человеческие тела и все животные. Употребляя в пищу растения, мы получаем от них энергию химических связей, сформированную благодаря поглощению солнечной энергии. То есть, опосредованно, человек также питается солнечной энергией, как питается ей все живое на Земле. Солнца – это та энергия, без которой не существовало бы жизни на нашей планете. Практически все виды и типы энергии, кроме атомной и термоядерной, можно полагать вторичными, по отношению к лучистой солнечной энергии. Механическая энергия приливов-отливов, а также тепловая геотермальных источников также не связаны с солнечным излучением.

Термоядерная энергия лежит в основе работы нашего центрального светила – Солнца

А это значит, что и солнечная энергия в свою очередь является порождением термоядерной энергии синтеза, выделяющейся в недрах Солнца. Таким образом, подавляющее большинство видов энергии, используемых нами на Земле, имеют своего первичного прародителя в виде термоядерной энергии синтеза. Ядерная, или атомная энергия – единственный вид энергии, выпадающий за пределы «стандартного» природного энергетического оборота. До появления человека, природа не знала (за редким исключением) процессов массового точечного распада атомных ядер с выделением огромной энергии. Исключение составляет африканский природный «атомный реактор» — месторождение урановых руд, где идут реакции атомного распада с нагревом окружающих пород. Однако в природе атомный распад длится миллионы лет, ведь периоды полураспада урана и плутония весьма велики. И хотя атомному распаду подвержены также многие другие атомы, помимо урана и плутония, в целом, в единицу времени эти процессы не вызывают существенных изменений в окружающем веществе. Человек внес свои изменения в энергетический баланс планеты, взрывая бомбы, строя атомные станции, сжигая нефть, газ и уголь. Безусловно, подобные процессы происходили и до человека, но они были растянуты на миллионы лет. Падали метеориты, горели леса, происходили выбросы углекислого газа из болот и толщ мирового океана, распадался уран. Но медленно — в небольших объемах на единицу времени.

Альтернативные источники

Сегодня активно развиваются альтернативные виды энергии и альтернативные . Однако в самих этих словах уже кроется ошибочное отношение к слову «энергия». Называя источники энергии «альтернативными» мы противопоставляем их «традиционным» источникам – углю, нефти и газу. И это понятно. Но, говоря «альтернативный вид энергии» мы несем чушь, потому что различные виды энергии существуют вне наших желаний. И не ясно, чему альтернативна энергия ветра, ведь она просто есть. Или чему альтернативна солнечная и термоядерная энергия нашего светила. Мы в любом случае, пользуемся ею, и странно называть ее альтернативной, поскольку как раз для нее альтернатив то и нет. В ближайшие тысячи лет мы никуда не уйдем от использования солнечной энергии, поскольку на ней базируется вся экосистема планеты. Аналогично странно выглядят слова «нетрадиционные виды энергии», «возобновляемые виды энергии», или «экологически чистые виды энергии». Какой вид энергии традиционен? Как можно возобновить тот или иной вид энергии? А как проверить энергию на экологическую чистоту? «Традиционность», «возобновляемость» и «экологичность» разумнее и правильнее отнести к . Тогда все сразу станет ясно и понятно. И тогда, упорядочив причинно-следственные связи можно приступать к поиску. Нетрадиционные виды источников энергии можно легко найти, изучая природу и окружающий мир. Здесь Вам и навоз для отопления, и сено, и генератор, использующий мускульную силу.

Возобновляемые источники энергии следует искать только в среде природных процессов

Подобных процессов не так уж много и все они связаны с движением по планете вещества – земли, воды, воздуха, а также с деятельностью живых организмов. Хотя, строго говоря, возобновляемых источников энергии – нет, поскольку главная наша «батарейка» — Солнце – имеет ограниченный срок службы. А для поиска экологически чистых источников следует для начала ясно определить критерии экологичности, ведь, по сути, любое вмешательство человека в энергобаланс планеты наносит урон экологии. Строго говоря, не может быть экологически чистых источников энергии, ведь они в любом случае будут влиять на экологию. Мы можем лишь свести это влияние к минимуму, или компенсировать его. При этом любые компенсационные воздействия должны производиться в рамках глобальной аналитической прогнозной модели.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.


Водоросли отапливают дома

Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.

По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.


«Лежачие полицейские» освещают улицы

Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.

В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.

Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.


Больше, чем просто футбол

Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.

Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.

Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.


Скрытая энергия вулканов

Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.

На данный момент существуют лишь две небольшие действующие электростанции подобного типа - во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).

Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.

Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.


Энергия из тепла человека

Принцип термоэлектрических генераторов , работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.

Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.

Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.

В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.


Шаги по «умной» тротуарной плитке

На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.

Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.

Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.

Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.


Велосипед, заряжающий смартфоны

Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.

Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.

Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.


Польза от сточных вод

Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод , загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.

Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.

Для производства электричества может использоваться почти любой тип органического отходного материала - не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.


«Бумажная» энергия

Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.

Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).

Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало - его хватает лишь на питание небольших портативных гаджетов.

Энергия - это способность выполнять работу: двигаться, перемещать предметы, производить тепло, звук или электричество.

Что такое Энергия?

Энергия таится повсюду - в солнечных лучах в виде тепловой и световой энергии, в плеере в виде звуковой энергии и даже в куске угля в виде накопленной химической энергии. Мы получаем энергию из пищи, а автомобильный двигатель извлекает ее из горючего - бензина или газа. В обоих случаях это химическая энергия. Существуют и другие формы энергии: тепловая, световая, звуковая, электрическая, ядерная. Энергия -это нечто незримое и неосязаемое, но способное накапливаться и переходить из одной формы в другую. Она никогда не исчезает.

Механическое движение

Одним из основных видов энергии является кинетическая - энергия движения. Тяжелые предметы, движущиеся с огромной скоростью, несут больше кинетической энергии, чем легкие или медленно движущиеся. Например, кинетическая энергия легкового автомобиля меньше, чем энергия грузовика, едущего с той же скоростью.

Тепловая энергия

Тепловая энергия не может существовать без кинетической. Температура физического тела зависит от скорости движения атомов, из которых оно состоит. Чем быстрее движутся атомы, тем сильнее нагрет объект. Поэтому тепловую энергию тела считают кинетической энергией его атомов.

Круговорот энергии

Солнце - основной источник энергии на Земле. Она постоянно преобразуется в другие виды энергии. К природным источникам энергии также относятся нефть, газ и уголь, которые, по сути, обладают достаточным запасом солнечной энергии.

Запас впрок

Энергию можно накапливать. Пружина накапливает энергию при сжатии. Когда же ее отпускают, она распрямляется, преобразуя потенциальную энергию в кинетическую. Лежащий на вершине скалы камень тоже обладает потенциальной энергией, при его падении она преобразуется в кинетическую.

Превращение энергии

Закон сохранения энергии гласит, что энергия никогда не исчезает, она просто преобразуется в другой вид. Например, если мальчик, едущий на велосипеде, тормозит и останавливается, его кинетическая энергия падает до нуля. Но она не исчезает совсем, а переходит в другие виды энергии - тепловую и звуковую. Трение шин велосипеда землю порождает тепло, нагревающее и землю, и колеса. А звуковая энергия проявляется в скрипе тормозов и шин.

Работа, энергия и мощность

Передача энергии - это работа. Количество совершаемой работы зависит от величины силы и расстояния перемещения предмета. Например, тяжеловес, поднимая штангу, совершает большую работу. Скорость, с которой совершается работа, называется мощностью. Чем быстрее штангист поднимает вес, тем больше его мощность. Энергию измеряют в джоулях (Дж), а мощность в ваттах (Вт).

Расход энергии

Энергия никогда не исчезает, по, если ее не использовать для работы, она будет попусту растрачена. Чаще всего энергия растрачивается на производство тепла.

Например, электрическая лампочка превращает в свет лишь пятую А часть энергии электричества, а все остальное переходит в ненужное тепло. Низкий коэффициент полезного действия автомобильных двигателей ведет к тому, что изрядное количество топлива сжигается впустую.

Энергетика игры в пейнтбол

При игре в энергия постоянно меняет свое состояние - потенциальная переходит в кинетическую. Движущийся шарик стремится остановиться из-за трения о детали автомата. Его энергия расходуется на преодоление силы трения, но не исчезает, а превращается в тепло. Когда игрок сообщает шарику дополнительную энергию толчком лопатки, движение шарика ускоряется.