Растворение газов в жидкостях. Закон Генри

Мужчинам

Равномерное распределение сольватов (гидратов) в растворителе. Является следствием диффузии и требует затраты энергии.

Основные понятия химии

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ

Введение

Химия является фундаментальной естественнонаучной дисциплиной. Знание химии необходимо для плодотворной творческой деятельности инженера любой специальности. Изучение химии позволяет получить современное научное представление о строении вещества, физических и химических превращениях неорганических и органических веществ, о свойствах тех­нических материалов и применении химических процессов в современной технике. Знание химии необходимо для ус­пешного последующего изучения общенаучных и специальных дисциплин.

Окружающий нас мир материален. Материя существует в виде вещества и поля. Поле – вид материи не имеющий массы покоя.

Веществовид материи, обладающий при данных условиях определёнными физическими свойствами . Например, вода при стандартных условиях (25 0 С, 1 атм.) бесцветная жидкость со следующими константами: мольная масса 18 г/моль, плотность 1 г/мл (при 4 °С), температуры фазовых переходов: замерзания и кипения соответственно 0 и 100 °С (при р = 1 атм.), теплоемкость жидкой воды 4,18 Дж/г·К и др. константы.

Вещества состоят из атомов или молекул. Основы атомно-молекулярного учения впервые были изложены М.В. Ломоносовым в 1741 году.

Атомэлектронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов . Главной характеристикой атома является заряд ядра, равный числу протонов в атоме. В состав ядра, за исключением изотопа водорода 1 Н, входят также нейтральные частицы нейтроны.

Элемент – разновидность атомов имеющих одинаковый заряд ядра .

Изотоп – вид атомов, имеющих одинаковый заряд ядра, но разную массу . Это связано с различным содержанием нейтронов в атоме одного элемента. Изотопы по физическим константам и химическим свойствам отличаются незначительно. Исключение составляют изотопы водорода: протий (Н) – 1 Н, дейтерий (D) – 2 Н и тритий (Т) – 3 Н. При переходе от протия к дейтерию и тритию атомная масса возрастает соответственно в два и три раза, что приводит к значительному различию физико-химических свойств данных изотопов.

Мо­лекула – это наименьшая частица вещества, обладаю­щая его химическими свойствами.

Моль – это количество вещества, содержащее столько молекул, ато­мов, ионов, электронов или других структурных единиц, сколько содержится атомов в 12 г изотопа углерода 12 С. Один моль атомов углерода 12 С содержат 6,02·10 23 (число Авогадро) атомов углерода. Например, один моль Н 2 SО 4 содержит 6,02·10 23 молекул Н 2 SО 4 .



Мольная масса – это масса одного моля вещества.

Например, М(Н 2 SО 4) = 98 г/моль.

Количество молей вещества обозначается n(x) и вычисляется по формуле

где М(х) – мольная масса вещества х,

fэкв.(х) – фактор эквивалентности вещества х.

Например, М(½Н 2 SО 4) = 98 · ½ = 49 г/моль.

Фактор эквивалентности вещества – это число показывающее, какая доля атома или молекулы вещества эквивалентна в кислотно-основной реакции одному иону Н + или в окислительно-восстановительной реакции одному электрону. Например: fэкв.(Н 2 SО 4) = ½, fэкв.(А1) = 1 ∕ 3 .

Количество моль эквивалентов вещества обозначается n. Например, n(½Н 2 SО 4) = 0,6 моль эквивалента Н 2 SО 4 .

1.2 Основные законы химии

Закон сохранения массы – масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате реакции.

Закон сохранения энергии – при любых взаимодействиях, имеющих место в изолированной системе, энергия этой системы остается постоянной и возможны лишь переходы одного вида энергии в другой в эквивалентных соотношениях.

Законы сохранения массы и энергии были открыты и экспериментально подтверждены М.В. Ломоносовым.

Закон постоянства состава –любые химически индивидуальные соединения имеют один и тот же количественный состав независимо от способа его получения.

Закон Авогадро – в равных объемах любых газов при одинаковых условиях содержится одно и то же число молекул . В газах расстояния между отдельными молекулами настолько велики, что собственный размер молекул практически не влияет на общий объем газа. На практике широко применяется следствие из закона Авогадро – один моль любого газа при нормальных условиях (0 0 С, 1 атм.) занимает объем 22,4 л (мольный объем).

Закон эквивалентов – числа моль эквивалентов всех веществ, участвующих и образующихся в реакции, одинаковы . Для уравнения реакции записанного в общем виде аА + вВ = сС выполняется следующее соотношение:

2) Объемы реагирующих веществ – обратно пропорциональны их нормальным концентрациям:


(1.5)

Приведенные выше законы объединяют под общим названием стехиометрические законы. Они позволяют проводить расчеты по формулам веществ и по уравнениям реакций.

2 ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

2.1 Простые вещества

Простые вещества состоят из атомов одного элемента. Например: Н 2 , О 2 , Fe и т.д. Один элемент может существовать в виде нескольких простых веществ – аллотропических модификаций . Например, О 2 – молекулярный кислород, О 3 – озон.

Простые вещества делятся на металлы и неметаллы. Металлы, в отличие от неметаллов, обладают высокой электро- и теплопроводностью, пластичностью, ковкостью. По химическим свойствам металлы являются только восстановителями, а неметаллы – как окислителями, так и восстановителями. В соответствии с общими закономерностями изменения свойств элементов в периодической таблице, наиболее активным металлом является франций, а неметаллом – фтор. При движении в периодической таблице от франция к фтору металлические свойства ослабевают, а неметаллические усиливаются.

2.2 Сложные вещества

Сложные вещества состоят из атомов различных элементов.

При соединении двух элементов образуются бинарные соединения. Данные соединения образуется при взаимодействии металла с неметаллом или неметалла с неметаллом. Например: КС1, Н 2 О, НС1 и т.д. Из бинарных соединений наиболее распространенными являются оксиды.

К основным классам неорганических соединений относятся также кис­лоты, основания и соли. Например: Н 2 СО 3 , КОН, К 2 СО 3 и т.д.

Оксиды – соединения элементов с кислородом . Оксиды делятся на две группы: солеобразующие и несолеобразующие.

Несолеобразующие оксиды – не образуют кислоты, основания и соли . Например: NO, CO и др.

Солеобразующие оксиды – при определённых химических реакциях образуют соли . Солеобра­зующие оксиды подразделяются на кислотные, основные и амфотерные.

Кислотные оксиды – при взаимодействием с водой образуют кислоты .

Например, СО 2 + Н 2 О = Н 2 СО 3 .

Кислот­ные оксиды образуют все неметаллы, а также металлы в степени окисления +3 и выше. Например: СО 2 , Р 2 О 3 , Р 2 О 5 , SО 3 , СrО 3 и др.

Некоторые оксиды являются смешанными оксидами двух кислот. Например, NО 2 является смешанным оксидом азотной и азотистой кислот 2NО 2 + Н 2 О = HNО 3 + HNО 2 .

Основные оксиды – при взаимодействием с водой образуют основания .

Например, Na 2 О + Н 2 О = 2NaOH.

К основным оксидам отно­сятся все оксиды, образованные щелочными, щелочноземельными и другими металлами в степенях окисления не выше +3. Например: Na 2 О, СаО, BaO, MgO, NiO и др.

Амфотерные оксиды – это оксиды проявляющие как кислотные так и основные свойства . Например:

Сr 2 О 3 + 6НС1 = 2СrС1 3 + 3Н 2 О,

Сr 2 О 3 + 2NaOH= 2NaCrО 2 + Н 2 О.

Примеры амфотерных оксидов: BeO, ZnO, А1 2 О 3 , PbO, РbО 2 , Fe 2 О 3 и др.

В настоящее время за основу номенклатуры неорганических соединений принята номенклатура, разработанная Международным Союзом по теоретиче­ской и прикладной химии (IUPAC).

Названия оксидов образуются от слова «оксид» и названия элемента в ро­дительном падеже. Если элемент образует несколько оксидов, то в название

оксида включают валентность элемента. Например:

FeO– оксид железа(II), Fe 2 О 3 – оксид железа(III).

Формулы соединений можно выражать посредством брутто-формул, которые показывают, какие элементы и в каком соотношении входят в состав соединения, а также графических формул, которые показывают не только состав, но и последовательность соединения атомов в соединении. Например, для оксида алюминия: брутто-формула – А1 2 О 3 ,

графическая формула - О=А1–О–А1=О.

Существуют также смешанные оксиды. Например, Fe 3 О 4 стехиометрически состоит из двух оксидов FeО и Fe 2 О 3 . В данном соединении FeО проявляет основные свойства, а Fe 2 О 3 – кислотные, поэтому этот оксид можно отнести к классу солей Fe(FeО 2) 2 – феррит железа(II). Структурную формулу можно представить следующим образом: О= Fe–О–Fe–О–Fe=О.

Кислоты – соединения диссоциирующие в водном растворе на катионы водорода и анионы кислотного остатка . Сильные кислоты диссоциируют полностью и необратимо по всем ступеням, а слабые – обратимо и ступенчато. Например: H 2 SО 4 →2Н + + SО 4 2 – ;

Н 2 СО 3 ↔ Н + + НСО 3 – (I–ступень), НСО 3 – ↔ Н + + СО 3 2 – (II–ступень).

Названия бескислородных кислот состоят из двух частей: название элемента, образовавшего кислоту, а затем слово «водородная». Напри­мер: НС1 – хлороводородная, H 2 S– сероводородная и др.

Названия кислородсодержащих кислот, содержащих кислотообразующий элемент в высшей степени окисления, состоят из названия элемента с окон­чанием –ная и добавлением слова «кислота». Если кислотообразующий эле­мент имеет ещё одну (более низкую) степень окисления, то в названии ки­слоты появляется суффикс – истая . Например:

H 2 SO 4 – серная кислота, H 2 SO 3 – сернистая кислота.

Если оксид образует несколько кислородсодержащих кислот с разным содержанием молекул воды, то к названию кислоты с меньшим её содержанием добавляется приставка мета- , а при наибольшем её содержании приставка орто- . Например:H 2 SiО 3 – метакремниевая и H 4 SiО 4 – ортокремниевая кислоты.

Основания – соединения диссоциирующие в водном растворе на гидроксид-ионы и катионы металла . Например: Са(OH) 2 → Сa 2+ + 2ОН – ;

Fe(OH) 2 ↔ FeОН + + ОН – (I–ступень),FeОН + ↔ Fe 2+ + ОН – (II–ступень).

Названия оснований состоит из слова «гидроксид» и названия катиона в роди­тельном падеже. Например:

NaOH – гидроксид натрия, Fe(OH) 3 – гидроксид железа(III).

Соли – соединения диссоциирующие на катион металла и анион кислотного остатка. Например, Аl 2 (SО 4) 3 → 2Аl 3+ + 3SО 4 2- .

Соли образуются в результате реакции нейтрализации. Это реакция взаимодействия кислоты с основанием или их оксидов приводящая к образованию нейтрального соединения (соли). Например:

Н 2 SО 4 + 2NаОН = Nа 2 SО 4 + 2Н 2 О,

Н 2 SО 4 + Nа 2 О = Nа 2 SО 4 + Н 2 О,

SО 3 + NаОН = Nа 2 SО 4 + Н 2 О,

SО 3 + Nа 2 О = Nа 2 SО 4 .

Если для реакции взяты стехиометрические количества кислоты и основания, то образуются средние соли. Например:

Н 2 СО 3 + 2NаОН = Nа 2 СО 3 + 2Н 2 О, Mg(ОН) 2 + 2HCl = Mg(ОН) 2 + 2Н 2 О.

В случае стехиометрического избытка слабой кислоты или слабого основания возможно образование кислых или основных солей. Например:

Н 2 СО 3 + NаОН = NаНСО 3 + Н 2 О – кислая соль,

NаНСО 3 – гидрокарбонат натрия;

Mg(ОН) 2 + HCl = MgОНCl + Н 2 О – основная соль,

MgОНCl– хлорид гидроксомагния.

Название соли включает латинское название кислотного остатка с прибавлением русского названия металла. Для бескислородных кислот к названию кислотного остатка присоединяется окончание – ид. Например, СuС1 2 – хлорид меди(II). В случае солей кислородсодержащих кислот, с кислородсодержащим элементом в высшей степени окисления, к названию кислотного остатка присоединяется окончание – ат. Если кислородсодержащий элемент имеет вторую (более низкую) степень окисления, то к названию кислотного остатка присоединяется окончание – ит. Например:

Nа 2 SО 4 – сульфат натрия, Nа 2 SО 3 – сульфит натрия.

Для солей кислородсодержащих кислот с кислотообразующим элементом, проявляющим более двух степеней окисления, прибавляются следующие приставки и суффиксы, которые приведены ниже на примере кислородсодержащих солей хлора:

NaСlO, NaСlO 2 , NaСlO 3 , NaСlO 4 .

гипохлорит натрия, хлорит натрия, хлорат натрия, перхлорат натрия.

Оксиды, гидроксиды и соли элементов III-периода.

На примере элементов III-периода составим формулы возможных оксидов и образуемых из них кислот, оснований и солей:

1) Оксиды:

Nа 2 О, МgО, Аl 2 О 3 , SiО, SiО 2 , Р 2 О 3 , Р 2 О 5 , SО 2 ,SО 3 , Сl 2 О, Сl 2 О 3 , Сl 2 О 5 , Сl 2 О 7 ;

2) Гидроксиды:

NаОН, Мg(ОН) 2 , Аl(ОН) 3 , Н 3 АlО 3 , Н 2 SiО 3 , Н 3 РО 3 , Н 3 РО 4 , Н 2 SО 3 , Н 2 SО 4 , НСlО, НСlО 2 , НСlО 3 , НСlО 4 ;

NаСl, МgCl 2 , АlCl 3 , К 3 АlО 3 , К 2 SiО 3 , К 3 РО 3 , К 3 РО 4 , К 2 SО 3 , К 2 SО 4 ,КСlО, КСlО 2 , КСlO 3 , КСlО 4 .

Из приведенных формул видно, что в периодах с увеличением порядкового номера элемента основные свойства ослабевают, а кислотные усиливаются, проходя через амфотерные.

ТЕМА 2 «РАСТВОРЫ»

ЛЕКЦИЯ №3

«ОБЩИЕ СВОЙСТВА РАСТВОРОВ»

1 Классификация систем, состоящих из двух и более веществ

Системы, состоящие из двух и более веществ, в зависимости от размеров частиц можно разделить на дисперсные системы, коллоидные растворы и истинные растворы .

В дисперсных системах размеры частиц находится в интервале 10 -3 ÷ 10 -5 см, в коллоидных растворах – 10 -5 ÷ 10 -7 см и в истинных растворах менее 10 -7 см, то есть в истинных растворах вещество раздроблено до отдельных молекул.

Таблица 1 – Классификация дисперсных систем

Дисперсные системы термодинамически неустойчивы и с течением времени разделяются.

Коллоидные растворы, в отличие от дисперсных систем, характеризующихся такой степенью раздробленности компонентов, при которой броуновское движение препятствует осаждению частиц. Коллоиды находятся в метастабильном состоянии и достаточно небольшого внешнего воздействия, чтобы началась коагуляция и разделение компонентов коллоидного раствора.

Коллоиды по внешнему виду напоминают истинные растворы – они прозрачны. Однако при прохождении светового луча, через прозрачный коллоидный раствор, он становится видимым сбоку на темном фоне. Этот оптический эффект называется конусом Тиндаля (рисунок1).

I - истинный раствор II - коллоидный раствор

Рисунок 1 – Эффект светорассеяния при прохождении луча света через коллоидный раствор

В истинных растворах растворенное веществ и растворитель измельчены до атомного или молекулярного уровня и равномерно распределены по всему объему раствора. Истинные растворы – термодинамически устойчивые системы. В последующем вместо названия истинный раствор будет применяться термин «раствор» .

Раствор – это однородная система, состоящая из двух или более компонентов.

Растворы имеют большое практическое значение, в них протекают многие химические реакции, в том числе и жизненно важные, лежащие в основе обмена веществ в живых организмах. В большинстве пищевых технологий применяются растворы. Последующий материал посвящен изучению свойств водных растворов.

2 Способы выражения состава растворов

Приведем наиболее часто употребляемые в химии способы выраже­ния состава раствора:

1) Массовая доля (ω) – отношение массы растворенного вещества к массе раствора

Массовая доля выражается в долях от единицы или в процентах (в долях от ста). Процентная концентрация показывает, сколько граммов растворённого вещества содержится в 100 г раствора.

Пример – ω(Н 2 SО 4) = 3% или 3% Н 2 SО 4 , т.е. в 100 г раствора содержится 3 г Н 2 SО 4 .

2) Мольная доля (N) – отношение количества молей растворенного вещества к общему числу молей раствора.В случае двухкомпонентного раствора формула имеет вид


Мольная доля показывает, сколько молей растворенного вещества приходится на один моль раствора.

Пример – N(Н 2 SО 4) = 0,2, т.е. на один моль раствора приходится 0,2 моль Н 2 SО 4 .

Массовая и мольная доли является безразмерными величинами.

3) Молярная концентрация (С)– отношение количества молей растворенного вещества к объему раствора .

Сокращенное обозначение молярной концентрации – М. На практике молярную концентрацию выражают обычно в моль/л.

Пример – 2М Н 2 SО 4 или С(Н 2 SО 4) = 2 моль/л.

4) Молярная концентрация эквивалента или нормальная концентрация (н) – отношение количества моль эквивалентов растворенного вещества к объему раствора

Пример – С(1/2 Н 2 SО 4) = 0,4 моль экв./л или 0,4 н Н 2 SО 4 , т.е. в одном литре раствора содержится 0,4 моль эквивалента Н 2 SО 4 .

5) Моляльная концентрация (Сm) – отношение количества молей растворенного вещества к 1 кг растворителя

.

Пример – С m (Н 2 SО 4) = 0,3 моль/кг, т.е. на 1 кг растворителя приходится 0,3 моль Н 2 SО 4 .

3 Физико-химические процессы образования растворов

В основе современных представлений образования растворов лежит гидратная теория Д. И. Менделеева. Он считал, что растворение не только физический, но и химический процесс взаимодействия растворенного вещества с растворителем. Об этом свидетельствует выделение или поглощение тепла, изменение объема, окраски и другие явления, протекающие в процессе растворения.

Процесс растворения включающие три основные стадии:

1) Разрушение растворенного вещества до уровня молекул или ионов. Этот процесс требует затраты энергии.

2) Взаимодействие молекул растворителя с частицами растворенного вещества. Этот процесс называется сольватацией или гидратацией, если растворителем является вода. Сольватация (гидратация) сопровождаются выделением энергии.

Суммарный тепловой эффект процесса растворения определяется суммой всех тепловых эффектов процессов протекающих при растворении.

4 Растворимость

Это способность вещества растворяться в растворителе. Количественно растворимость характеризуется концентрацией насыщенного раствора. Насыщенным является раствор в котором растворенное вещество находящийся в равновесии с раствором. Растворы с меньшей концентрацией, чем в насыщенном, называются ненасыщенными, с большей – пересыщенными.

Растворимость веществ зависит от природы растворенного вещества и растворителя, а также от внешних условий (давления, температуры и т. д.).

На растворимость также оказывает влияние природа растворителя. Обычно вещества с ионным и высокополярными связями лучше растворяются в полярных растворителях (вода, спирт, жидкий аммиак и др.), а вещества с неполярными или слабополярными связями – в неполярных растворителях (бензол, сероуглерод и др.). Это подтверждает известное правило: «подобное растворяется в подобном».

4.1 Растворимость газов в жидкостях. Закон Генри

Влияние давления на растворимость газов в жидкостях выражается законом Генри:

С = k · p,
где C- концентрация газа в насыщенном растворе,

Количество газа, растворённого в единице объёме раствора называется растворимостью: м 3 /м 3 , г/л, моль/л и т. д.

Растворимость газа в жидкости определяет способность чистого газового компонента или смеси газов образовывать с жидкостью гомогенные растворы.

Растворимость газа увеличивается с ростом давления :

Р, мм рт. ст. 102 390 874 1160

G, г/л 2.74 10,6 24,0 31,6

Газ в силу большой летучести не может растворятся в жидкости бесконечно и уже при небольшой концентрации устанавливается равновесие "раствор-газ", при этом не просто раствор, а насыщенный раствор при данных р и Т.

Процесс растворения идеального газа при сравнительно невысоких давлениях, в отсутствие химического взаимодействия газа с жидкостью, описывается законом Генри (Уильям, англ. учён. 1774-1836), открытом им в 1803 году, который гласит: "Количество растворённого в жидкости газа прямо пропорционально его давлению над раствором при постоянной температуре".

где К - константа Генри, 1/ Па, 1/ бар, 1/атм;

р - общее давление, Па, бар, атм.

В случае, когда растворяется чистый газ (один компонент), то величина р будет равна общему давлению, а если растворяется смесь газов, то величина р будет характеризует парциальное давление (р i) растворённого компонента газа в жидкости:

Закон Генри является частным случаем общего закона Дальтона .

Закон Дальтона : р = å р i

Парциальное давление компонента в смеси газов рассчитывается по формуле:

p i = p общ ×х i , (3)

где p i - парциальное давление i-го компонента;

p общ - общее давление газовой смеси;

Выражение (2) - выражение закона Генри-Дальтона.

V Г /V Ж Þ V 2 ® объёмная доля растворённого газа, которая для идеального газа равна мольной доли (х 2 ) Þ следствие закона Авогадро . х 2 = К Г? р 2 .

Выражение закона Генри-Дальтона записывается в виде:

(4)

где х i - мольная доля растворённого газа.

К i - константа Генри i-го компонента газа;

p i - парциальное давление i-го компонента газа в смеси.

Уравнение (4) иная форма, с которой мы знакомились для предельно разбавленных растворов (ПРР). В реальных предельно разбавленных растворах для растворителя (х 1) выполняется закон Рауля, а для растворенного жидкого вещества (х 2) - закон Генри.

Для ПРР растворов жидкостей в жидкостяхсо сравнимыми давлениями насыщенных паров Генри экспериментально обнаружил, что при низких концентрациях давление пара растворённого вещества пропорционально его мольной доле

р 2 = k Г? х 2 . (5)

где k Г - эмпирическая константа (константа Генри), имеющая размерность давления. Если сравнить выражение 5 с законом Рауля (з-н Рауля Þ ), то следует, что k Г @


Но коэффициент пропорциональности отличен от давления насыщенного пара чистого вещества: k Г ¹ р о i

Константа Генри определяется как тангенс угла наклона касательной к экспериментальной кривой зависимости давления пара от состава раствора при х 2 ®0.

Константа Генри определяется экстраполяцией опытных данных:

k Г = lim çр 2 / х 2 ç при х 2 ®0.

При х 2 ®1, k Г ® р о 2 , и мы получим закон Рауля.

Сравним эти две формы (4)

р 2 = k Г? х 2 . (5) Откуда следует Þ К = 1/ k Г.

На практике растворимость газа принято выражать не в мольных долях, а в объёмных единицах по выражению (1): , . (6)

Отношение растворимости к давлению (при T = const) есть константа Генри:

И она имеет физический смысл коэффициента растворимости при парциальном давлении газа равном единице, 1 бар, 1 МПа, 1 атм.

Мерой растворимости газа в жидкости является коэффициент растворимости (a ), который характеризует количество растворённого в жидкости (растворе) газа при данных термобарических (р и Т) условиях:

a = (V Г /V р) р, Т, (7)

где a - коэффициент растворимости газа (коэффициент Бунзена ), м 3 /м 3 .

Аналитическое выражение закона Генри термодинамическим методом можно получить на основе уравнения Гиббса-Дюгема:

, (8)

где х 1 и х 2 - мольные доли растворителя (1 - жидкость) и растворённого вещества (2 - газ);

m 1 и m 2 - химические потенциалы растворителя и растворённого вещества.

Химические потенциалы можно определить по следующим выражениям:

и , (9)

где р 1 и р 2 - парциальные растворителя и растворённого газа.

Продифференцировав выражения (9), получим дифференциалы от химических потенциалов:

и . (10)

Подставляем выражение (4.10) в исходное уравнение Гиббса-Дюгема (8):

Выделяем dlnp 2 из уравнения (11):

. (12)

Это уравнение можно преобразовать к такому виду:

. (13)

Парциальное давление пара с идеальными свойствами для растворителя можно определить по закону Рауля и выразить его через давление насыщенного пара:

Продифференцируем (14) по х 1: , подставим его в (13) и получим следующее уравнение:

или . (15)

Берём неопределённый интеграл от уравнения (15) с введением константы интегрирования lnk, где k Г - константа Генри:

(16)

После потенцирования выражения (4.16) получаем уравнение закона Генри :

р 2 = k Г ×х 2 . (17)

На основе этого уравнения закон Генри гласит : "При постоянной температуре парциальное давление летучего (газообразного) компонента (р 2) прямо пропорционально его мольной доле в жидкости (х 2)".

Эта формулировка закона Генри применима для случая, когда растворённое газообразное вещество развивает бо¢льшую упругостью пара (р о Г) по сравнению с упругостью пара чистого растворителя (р о р), что характерно для газов. При этом оба вещества раствора (газ и растворитель) химически инертны. Размерность величины k Г в уравнении (17) такая же как и парциального давления.

Растворимость газов в жидкостях прямо пропорциональна парциальному давлению газа (р г) над поверхностью жидкости: .

Константа Генри постоянна для i-го вещества при данной температуре, а при изменении температуры её значение меняется по экспоненциальному закону. Значения величин К для разных систем приводятся в справочниках по термодинамическим свойствам веществ.

В общем случае, константа Генри зависит от природы газа, природы растворителя и температуры .

В области высоких давлений (выше 1¸1.2 МПа) или когда свойства газового раствора неидеальны , что может проявляться при сравнительно высоких концентрациях растворённого газа в растворителе, то в выражении закона Генри вместо давлений используют величины фугитивностей:

f г /К г = х г и f г = g f × p г, (18)

где f г - фугитивность (летучесть) газа;

g f - коэффициент фугитивности, зависящий от р и Т.

Принцип Ле Шателье . На термодинамическую систему, находящуюся в состоянии устойчивого равновесия, могут воздействовать внешние факторы, выводящие её из этого состояния. Реакцию системы на эти воздействия можно качественно определить на основе принципа Ле Шателье-Брауна, предложенного в 1884 году французским химиком Анри Луи Ле Шателье (1850-1936 г.г.) и обоснованного в 1887 году немецким физиком Карлом Фердинандом Брауном (1850-1918 г.г.): "Внешние воздействия, выводящие термодинамическую систему из состояния устойчивого равновесия, вызывают в ней протекание процессов, которые уменьшают влияние этих внешних возмущений".

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях служит содержание его в насыщенном растворе. Поэтому численно растворимость может быть выражена теми же способами, что и состав, например, процентным отношением массы растворенного вещества к массе насыщенного раствора или количеством растворенного вещества, содержащимся в 1 л насыщенного раствора. Часто растворимость выражают также числом единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя; иногда выраженную этим способом растворимость называют коэффициентом растворимости.

Растворимость различных веществ в воде изменяется в широких пределах. Если в 100 г воды растворяется более 10 г вещества, то такое вещество принято называть хорошо растворимым; если растворяется менее 1 г вещества - малорастворимым и, наконец, практически нерастворимым, если в раствор переходит менее 0,01 г вещества.

Растсорение большинства твердых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом состоянии п его насыщенным раствором

приходим к выводу, что в тех случаях, когда вещество растворяется с поглощением энергии, повышение температуры должно приводить к увеличению его растворимости

В большинстве подобных случаев с повышением температуры взаимная раствори-мость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

При растворении твердых тел в воде объем системы обычно изменяется незначительно. Поэтому растворимость веществ, находящихся в твердом состоянии, практически не зависит от давления.

Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т. е. смешиваются друг с другом в любых пропорциях, как, например, спирт и вода, другие - взаимно растворяются лишь до известного предела.

Температура, прн которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения

закон распределения, согласно которому вещество, способное растворяться в двух несме-ишвающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:



Здесь С1 и С2-концентрации растворенного вещества в первом и втором растворителях; /(- так называемый коэффициент распределения.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа - это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается.

Закон Генри :Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Закон Генри может быть выражен уравнением

где С - массовая концентрация газа в насыщенном растворе; р - парциальное давление; k - коэффициент пропорциональности, называемый константой Генри (или коэффициентом Генри).

Отметим важное следствие закона Генри: объем газа, растворяющегося при постоянной температуре в данном объеме жидкости, не зависит от его парциального давления. Если над жидкостью находится смесь нескольких газов, то растворимость каждого из них определяется его парциальным давлением.

Это необходимо учитывать при расчете растворимости газов, находящихся в смеси с другими газами. Газы подчиняются закону Генри пи не очень высоких давлениях и притом лишь в случае, когда они не вступают в химическое взаимодействие с растворителем. При высоких давлениях, когда поведение всех газов заметно отличается от идеального, отклоненне от закона Генри наблюдается и в случае газов, химически не взаимодействующих с растворителем.

Предельно разбавленными называются такие растворы, в которых молярная доля растворенного веществаx 2 < 0,005 и, следовательно, молярная доля растворителяx 1 близка к единице.

Поведение растворенного вещества в предельно разбавленном растворе не подчиняется законам идеальных растворов. Давление насыщенного пара растворенного вещества линейно зависит от его концентрации, но прямая линия не совпадает с линией, соответствующей закону Рауля. Давление пара растворенного вещества подчиняется

закону Генри : для предельно разбавленных растворов парциальное давление насыщенного пара растворенного вещества пропорционально его молярной доле:

где x i – молярная доляi -го растворенного вещества;k i – константа с размерностью давления, называемаякоэффициентом (константой) Генри.

Заметим, что в области I (рис. 1,2) для компонента В закон Рауля не соблюдается, зато здесь наблюдается прямолинейная зависимость между р В и х В, т.е.выполняется закон Генри:

р В =k В х В, причем k В р 0,В. Аналогично для областиIIзакон Генри выполняется для компонента А: р А = k А х А.

Таким образом, в предельно разбавленных реальных растворах растворитель подчиняется закону Рауля, а растворенное вещество – закону Генри.

5.3 Диаграммы состояния жидкость-пар для бинарных систем

Обычно для описания состояния растворов используют диаграммы Т кип – x (температура кипения – состав) при р = const или р – x (давление пара – состав) при Т = const.

Рассмотрим случай, когда раствор образован двумя летучими жидкостями.

Р
ис. 3. Зависимость общего давления пара от

состава идеального раствора и состава пара.

Точки 1 и 2 на рис. 3 характеризуют состав находящихся в равновесии жидкой и паровой фаз, соответственно. Точка 3 характеризует валовый (общий) состав системы. В области I диаграммы существует только жидкий раствор, в области II - только пар, в области III жидкая и паровая фазы сосуществуют.

Кривая p = f (x) называетсялинией жидкости и выражает зависимость давления пара над раствором от состава жидкого раствора.

Кривая p = f (y) называетсялинией пара и выражает зависимость давления пара над раствором от состава пара.

Интересно отметить, что даже в случае образования идеальных растворов состав пара не совпадает с составом жидкого раствора для большинства идеальных растворов. Так, парциальное давление компонента А в паре над раствором по закону Рауля равно

.

x A - мольная доля компонентаAв растворе.

С другой стороны, из закона Дальтона следует, что

, (14)

где р общ. - общее давление пара над раствором,y A - мольная доля компонента А в паре. Тогда

Поскольку давление пара над чистым компонентом A(р 0 A) всегда больше общего давления пара для случая, представленного на рис.3, тоy A >x A во всей области концентраций. Для таких систем пар обогащен компонентомAпо сравнению с жидким раствором.

С точки зрения здравого смысла (и опыта) пар должен быть обогащен более летучим компонентом (т.е. имеющим либо большее давление насыщенного пара при данной температуре Т, либо более низкую температуру кипения при заданном давлении р).

Температурой кипения раствора (Т кип) называют температуру, при которой давление насыщенного пара над раствором равно внешнему давлению p.

Зависимость температуры кипения от состава раствора и пара представлена на рис. 4. В области I диаграммы существует только пар (раствор газов), в области II - только жидкий раствор; область III является областью сосуществования пара и жидкого раствора.

Кривая aa 1 a 2 …b называется кривойкипения;

Кривая ab 1 b 2 …b - кривойконденсации ;

T 0A иT 0B - температуры кипения чистых жидкостей А и В (более летучим компонентом является В, так какT 0A >T 0B).

Правило рычага отношение количества (массы) двух фаз, находящихся в равновесии в гетерогенной двухфазной области, обратно пропорциональны расстояниям от соответствующих фазовых точек до фигуративной точки системы.

Для точки системы, обозначенной фигуративной точкой (с) Рис. 5, правило рычага можно записать следующим образом:

или m жид ·l жид = m пар ·l пар

Масса газа, растворенного в жидкости, пропорциональна давлению газа над поверхностью жидкости.

Закон Генри описывает процесс растворения газа в жидкости. Что представляет собой жидкость, в которой растворен газ, мы знаем на примере газированных напитков — безалкогольных, слабоалкогольных, а по большим праздникам — шампанского. Во всех этих напитках растворена двуокись углерода (химическая формула CO 2) — безвредный газ, используемый в пищевой промышленности по причине его хорошей растворимости в воде, а пенятся после открытия бутылки или банки все эти напитки по той причине, что растворенный газ начинает выделяться из жидкости в атмосферу, поскольку после открытия герметичного сосуда давление внутри падает.

Собственно, закон Генри констатирует достаточно простой факт: чем выше давление газа над поверхностью жидкости, тем труднее растворенному в ней газу высвободиться. И это совершенно логично с точки зрения молекулярно-кинетической теории , поскольку молекуле газа, чтобы вырваться на свободу с поверхности жидкости, нужно преодолеть энергию соударений с молекулами газа над поверхностью, а чем выше давление и, как следствие, число молекул в приграничной области, тем сложнее растворенной молекуле преодолеть этот барьер.

Закон Генри объясняет и другое свойство шипучих напитков — характерную пену, которая так и стремится выплеснуться наружу после того, как вы открыли бутылку газировки или (если повезет) шампанского. Чтобы закачать в напиток побольше газа, производители нарочно закупоривают бутылки и банки под большим приповерхностном давлении, а в шампанском оно и вовсе нагнетается само в процессе ферментации и естественного выделения двуокиси углерода внутри бутылки.

Когда вы дергаете за кольцо банки или открываете бутылку, углекислый газ, находящийся внутри под высоким давлением, производит характерный хлопок или шипение. Давление над поверхностью жидкости стремительно падает, уравниваясь с атмосферным давлением, и молекулы CO 2 начинают беспрепятственно выделяться из напитка, в котором были растворены, в результате чего напиток пузырится и пенится. Рано или поздно растворенный углекислый газ выделится из жидкости практически весь, направленное к поверхности давление растворенного в жидкости CO 2 сравняется с атмосферным, и напиток перестанет пениться и пузыриться. Вот почему шипучие напитки в откупоренном виде выдыхаются — и достаточно быстро.

Оказывается, физический смысл можно найти даже в банке газировки.

William Henry, 1774-1836

Английский химик и физик. Родился в семье владельца химической мануфактуры в г. Манчестер. Учился на медицинском факультете Эдинбургского университета, окончив его, работал в морге в Манчестере. Унаследовав семейную химическую мануфактуру, посвятил свободное время физико-химическим исследованиям. Помимо закона, названного его именем, Генри открыл химическую формулу аммиака и обнаружил различие между метаном и этиленом. Помимо исследований (на которые он потратил значительную часть семейного наследства) Генри оставил после себя учебник «Элементы экспериментальной химии» (Elements of Experimental Chemistry) , признанный самым удачным учебником по химии первой половины XIX века. Близким другом и сотрудником Генри был другой видный ученый того времени Джон Дальтон (см. Закон Дальтона), а сын Уильяма Генри старшего Уильям Чарльз Генри (William Charles Henry) впоследствии написал первую и наиболее полную биографию друга своего отца.