Математические кольца. Кольца: определение, свойства, примеры

Выбор цветов

Непустое множество К, на котором заданы две бинарные операции-сложение (+) и умножение ( ), удовлетворяющие условиям:

1) относительно операции сложения К - коммутативнаятруппа;

2) относительно операции умножения К - полугруппа;

3) операции сложения и умножения связаны законом дистрибутивности, т. е. (a+b)с=ас+bс, с(a+b) =ca+cb для всех а, b, c K , называется кольцом (К,+, ).

Структура (К, +) называется аддитивной группой кольца. Если операция умножения коммутативна, т. е. ab=ba. для всех а , b , то кольцо называется коммутативным.

Если относительно операции умножения существует единичный элемент, который в кольце принято обозначать единицей 1,. то говорят, что К есть кольцо с единицей.

Подмножество L кольца называется подкольцом, если L - подгруппа аддитивной группы кольца и L замкнуто относительно операции умножения, т. е. для всех a, b L выполняется а+b L и ab L.

Пересечение подколец будет подкольцом. Тогда, как и в случае групп, подкольцом, порожденным множеством S K, называется пересечение всех подколец К, содержащих S.

1. Множество целых чисел относительно операций умножения и сложения (Z, +, )-коммутативное кольцо. Множества nZ целых чисел, делящихся на п, будет подкольцом без единицы при п>1.

Аналогично множество рациональных и действительных чисел - коммутативные кольца с единицей.

2. Множество квадратных матриц порядка п относительно-операций сложения и умножения матриц есть кольцо с единицей Е - единичной матрицей. При п>1 оно некоммутативное.

3. Пусть K-произвольное коммутативное кольцо. Рассмотрим всевозможные многочлены

с переменной х и коэффициентами а 0 , а 1 , а 2 , ..., а n , из К. Относительно алгебраических операций сложения и умножения многочленов- это коммутативное кольцо. Оно называется кольцом многочленов К от переменной х над кольцом К (например, над кольцом целых, рациональных, действительных чисел). Аналогично определяется кольцо многочленов K от т переменных как кольцо многочленов от одной переменной х т над кольцом K.



4. Пусть X - произвольное множество, К -произвольное кольцо. Рассмотрим множество всех функций f: Х К, определенных на множестве X со значениями в К Определим сумму и произведение функций, как обычно, равенствами

(f+g)(x)=f(x)+g(x); (fg)(x)=f(x)g(x),

где + и - операции в кольце К.

Нетрудно проверить, что все условия, входящие в определение кольца, выполняются, и построенное кольцо будет коммутативным, если коммутативно исходное кольцо K . Оно называется кольцом функций на множестве X со значениями в кольце К.

Многие свойства колец - это переформулированные соответствующие свойства групп и полугрупп, например: a m a n =a m + n , (а т) п =а тп для всех m , n и всех a .

Другие специфические свойства колец моделируют свойства чисел:

1) для всех a a 0=0 a=0;

2) .(-а)b=а(-b)=-(ab) ;

3) - a=(-1)a .

Действительно:

2) 0=a (аналогично (-a)b=-(ab));

3) используя второе свойство, имеем-a= (-a)1 =a(-1) = (-1)a .

Поле

В кольцах целых, рациональных и действительных чисел из того, что произведение ab=0, следует, что либо а =0, либо b =0. Но в кольце квадратных матриц порядка n >1 это свойство уже не выполняется, так как, например, = .

Если в кольце К ab=0 при а 0, b , то а называется левым, а b - правым делителем нуля. Если в К нет делителей нуля (кроме элемента 0, который является тривиальным делителем нуля), то K называется кольцом без делителей нуля.

1. В кольце функции f: R R на множестве действительных чисел R рассмотрим функции f 1 (x)=|x|+x; f 2 (x) =|x|-x. Для них f 1 (x) =0 при x и f 2 (x )=0 при x , а поэтому произведение f 1 (x) f 2 (x) - нулевая функция, хотя f 1 (x) и f 2 (x) . Следовательно, в этом кольце есть делители нуля.

2. Рассмотрим множество пар целых чисел (а, b), в котором заданы операции сложения и умножения:

(a 1 , b 1)+(a 2 , b 2)=(a 1 +a 2 , b 1 +b 2);

(a 1 , b 1)(a 2 , b 2)= (a 1 a 2 , b 1 b 2).

Это множество образует коммутативное кольцо с единицей (1,1) и делителями нуля, так как (1,0)(0,1)=(0,0).

Если в кольце нет делителей нуля, то в нем выполняется закон сокращения, т. е. ab=ac, а =с. Действительно, ab-ac=0 a(b-c)=0 (b-c)=0 b=c.

Пусть К - кольцо, с единицей. Элемент а называется обратимым, если существует такой элемент а -1 , для которого aa -1 =a -1 a=1 .

Обратимый элемент не может быть делителем нуля, так как. если ab =0 , то a -1 (ab) =0 (a -1 a)b=0 1b=0 b=0 (аналогично ba=0 ).

Теорема. Все обратимые элементы кольца К с единицей образуют группу относительно умножения.

Действительно, умножение в К ассоциативно, единица содержится во множестве обратимых элементов и произведение не выводит из множества обратимых элементов, так как если а и b обратимы, то
(аb) -1 =b -1 a -1 .

Важную алгебраическую структуру образуют коммутативные кольца К, в которых каждый ненулевой элемент обратим, т. е. относительно операции умножения множество K \{0} образует группу. В таких кольцах определены три операции: сложение, умножение и деление.

Коммутативное кольцо Р с единицей 1 0, в котором каждый ненулевой элемент обратим, называется полем.

Относительно умножения все отличные от нуля элементы поля образуют группу, которая называется мультипликативной группой поля.

Произведение аb -1 записывается в виде дроби и имеет смысл лишь при b 0 . Элемент является единственным решением уравнения bx=a. Действия с дробями подчиняются привычным для нас правилам:

Докажем, например, второе из них. Пусть х= и у= - решения уравнений bx=a, dy=c. Из этих уравнений следует dbx=da, bdy=bc bd(x+y)=da+bc t= - единственное решение уравнения bdt=da+bc.

1. Кольцо целых чисел не образует поля. Полем является множество рациональных и множество действительных чисел.

8.7. Задания для самостоятельной работы по главе 8

8.1. Определить, является ли операция нахождения скалярного произведения векторов n-мерного евклидового пространства коммутативной и ассоциативной. Обосновать ответ.

8.2. Определить, является ли множество квадратных матриц порядка n относительно операции умножения матриц, группой или моноидом.

8.3. Указать, какие из следующих множеств образуют группу относительно операции умножения:

а) множество целых чисел;

б) множество рациональных чисел;

в) множество действительных чисел, отличных от нуля.

8.4. Определить, какие из следующих структур образует множество квадратных матриц порядка n с определителем, равным единице: относительно обычных операций сложения и умножения матриц:

а) группу;

б) кольцо;

8.5. Указать, какую структуру образует множество целых чисел относительно операции умножения и сложения:

а) некоммутативное кольцо;

б) коммутативное кольцо;

8.6. Какую из перечисленных ниже структур образует множество матриц вида с действительными a и b относительно обычных операций сложения и умножения матриц:

а) кольцо;

8.7. Какое число нужно исключить из множества действительных чисел, чтобы оставшиеся числа образовывали группу относительно обычной операции умножения:

8.8. Выяснить, какую из следующих структур образует множество, состоящее из двух элементов a и e, с бинарной операцией, определенной следующим образом:

ee=e, ea=a, ae=a, aa=e.

а) группу;

б) абелеву группу.

8.9. Являются ли кольцом четные числа относительно обычных операций сложения и умножения? Обосновать ответ.

8.10. Является ли кольцом совокупность чисел вида a+b , где a и b – любые рациональные числа, относительно операций сложения и умножения? Ответ обосновать.

Аннотация: В данной лекции рассматриваются понятия колец. Приведены основные определения и свойства элементов кольца, рассмотрены ассоциативные кольца. Рассмотрен ряд характерных задач, доказаны основные теоремы, а также приведены задачи для самостоятельного рассмотрения

Кольца

Множество R с двумя бинарными операциями (сложением + и умножением ) называется ассоциативным кольцом с единицей , если:

Если операция умножения коммутативна, то кольцо называется коммутативным кольцом. Коммутативные кольца являются одним из главных объектов изучения в коммутативной алгебре и алгебраической геометрии.

Замечания 1.10.1 .

Примеры 1.10.2 (примеры ассоциативных колец) .

Мы уже убедились, что группа вычетов (Z n ,+)={C 0 ,C 1 ,...,C n-1 }, C k =k+nZ , по модулю n с операцией сложения , является коммутативной группой (см. пример 1.9.4, 2)).

Определим операцию умножения, полагая . Проверим корректность этой операции . Если C k =C k" , C l =C l" , то k"=k+nu , l"=l+nv , , и поэтому C k"l" =C kl .

Так как (C k C l)C m =C (kl)m =C k(lm) =C k (C l C m), C k C l =C kl =C lk =C l C k , C 1 C k =C k =C k C 1 , (C k +C l)C m =C (k+l)m =C km+lm =C k C m +C l C m , то является ассоциативным коммутативным кольцом с единицей C 1 кольцом вычетов по модулю n ).

Свойства колец (R,+,.)

Лемма 1.10.3 (бином Ньютона) . Пусть R - кольцо с 1 , , . Тогда:

Доказательство.

Определение 1.10.4 . Подмножество S кольца R называется подкольцом , если:

а) S - подгруппа относительно сложения в группе (R,+) ;

б)для имеем ;

в)для кольца R с 1 предполагается, что .

Примеры 1.10.5 (примеры подколец) .

Задача 1.10.6 . Описать все подкольца в кольце вычетов Z n по модулю n .

Замечание 1.10.7 . В кольце Z 10 элементы, кратные 5 , образуют кольцо с 1 , не являющееся подкольцом в Z 10 (у этих колец различные единичные элементы).

Определение 1.10.8 . Если R - кольцо, и , , ab=0 , то элемент a называется левым делителем нуля в R , элемент b называется правым делителем нуля в R .

Замечание 1.10.9 . В коммутативных кольцах, естественно, нет различий между левыми и правыми делителями нуля.

Пример 1.10.10 . В Z , Q , R нет делителей нуля.

Пример 1.10.11 . Кольцо непрерывных функций C имеет делители нуля. Действительно, если


то , , fg=0 .

Пример 1.10.12 . Если n=kl , 1

Лемма 1.10.13 . Если в кольце R нет (левых) делителей нуля, то из ab=ac , где , , следует, что b=c (т. е. возможность сокращать на ненулевой элемент слева, если нет левых делителей нуля; и справа, если нет правых делителей нуля).

Доказательство. Если ab=ac , то a(b-c)=0 . Так как a не является левым делителем нуля, то b-c=0 , т. е. b=c .

Определение 1.10.14 . Элемент называется нильпотентным , если x n =0 для некоторого . Наименьшее такое натуральное число n называется степенью нильпотентности элемента .

Ясно, что нильпотентный элемент является делителем нуля (если n>1 , то , ). Обратное утверждение неверно (в Z 6 нет нильпотентных элементов, однако 2 , 3 , 4 - ненулевые делители нуля).

Упражнение 1.10.15 . Кольцо Z n содержит нильпотентные элементы тогда и только тогда, когда n делится на m 2 , где , .

Определение 1.10.16 . Элемент x кольца R называется идемпотентом , если x 2 =x . Ясно, что 0 2 =0 , 1 2 =1 . Если x 2 =x и , , то x(x-1)=x 2 -x=0 , и поэтому нетривиальные идемпотенты являются делителями нуля.

Через U(R) обозначим множество обратимых элементов ассоциативного кольца R , т. е. тех , для которых существует обратный элемент s=r -1 (т. е. rr -1 =1=r -1 r ).

Определение 2.5. Кольцом называют алгебру

R = (R, +, ⋅,0 , 1 ),

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых a, b, c ∈ R выполняются равенства:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. а + 0 = a;
  4. для каждого а ∈ R существует элемент а", такой, что a+a" = 0
  5. а-(b-с) = (а-b)-с;
  6. а ⋅ 1 = 1 ⋅ а = а;
  7. а⋅(b + с) =а⋅b + а⋅с, (b + с) ⋅ а = b⋅ а + с⋅а.

Операцию + называют сложением кольца , операцию умножением кольца , элемент 0 - нулем кольца , элемент 1 - единицей кольца .

Равенства 1-7, указанные в определении, называют аксиомами кольца . Рассмотрим эти равенства с точки зрения понятия группы и моноида .

Аксиомы кольца 1-4 означают, что алгебра (R, +, 0 ), сигнатура которой состоит только из операций сложения кольца + и нуля кольца 0 , является абелевой группой . Эту группу называют аддитивной группой кольца R и говорят также, что по сложению кольцо есть коммутативная (абелева) группа.

Аксиомы кольца 5 и 6 показывают, что алгебра (R, ⋅, 1), сигнатура которой включает только умножение кольца ⋅ и еди- единицу кольца 1, есть моноид. Этот моноид называют мультипликативным моноидом кольца R и говорят, что по умножению кольцо есть моноид.

Связь между сложением кольца и умножением кольца устанавливает аксиома 7, согласно которой операция умножения дистрибутивна относительно операции сложения.

Учитывая сказанное выше, отметим, что кольцо - это алгебра с двумя бинарными и двумя нульарными операциями R =(R, +, ⋅,0 , 1 ), такая, что:

  1. алгебра (R, +, 0 ) - коммутативная группа;
  2. алгебра (R, ⋅, 1 ) - моноид;
  3. операция ⋅ (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

Замечание 2.2. В литературе встречается иной состав аксиом кольца, относящихся к умножению. Так, могут отсут- отсутствовать аксиома 6 (в кольце нет 1 ) и аксиома 5 (умножение не ассоциативно). В этом случае выделяют ассоциативные коль- кольца (к аксиомам кольца добавляют требование ассоциативности умножения) и кольца с единицей. В последнем случае добавля- добавляются требования ассоциативности умножения и существования единицы.

Определение 2.6. Кольцо называют коммутативным , если его операция умножения коммутативна.

Пример 2.12. а. Алгебра (ℤ, +, ⋅, 0, 1) есть коммутативное кольцо. Отметим, что алгебра (ℕ 0 , +, ⋅, 0, 1) кольцом не будет, поскольку (ℕ 0 , +) - коммутативный моноид, но не группа.

б. Рассмотрим алгебру ℤ k = ({0,1,..., k - 1}, ⊕ k , ⨀ k , 0,1) (к>1) с операцией ⊕ k сложения по модулю л и ⨀ k (умножения по модулю л). Последняя аналогична операции сложения по модулю л: m ⨀ k n равно остатку от деления на k числа m ⋅ n. Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k.

в. Алгебра (2 A , Δ, ∩, ∅, А) - коммутативное кольцо, что следует из свойств пересечения и симметрической разности множеств.

г. Пример некоммутативного кольца дает множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц. Единицей этого кольца является единичная матрица, а нулем - нулевая.

д. Пусть L - линейное пространство. Рассмотрим множество всех линейных операторов, действующих в этом пространстве.

Напомним, что суммой двух линейных операторов А и В называют оператор А + В , такой, что (А + В ) х = Ах + Вх , х L .

Произведением линейных операторов А и В называют линей- линейный оператор АВ , такой, что (АВ )х = А (Вх ) для любого х L .

Используя свойства указанных операций над линейными операторами, можно показать, что множество всех линейных операторов, действующих в пространстве L , вместе с операциями сложения и умножения операторов образует кольцо. Нулем этого кольца служит нулевой оператор , а единицей - тождественный оператор .

Это кольцо называют кольцом линейных операторов в линейном пространстве L. #

Аксиомы кольца называют также основными тождествами кольца . Тождество кольца - это равенство, ливость которого сохраняется при подстановке вместо фигурирующих в нем переменных любых элементов кольца. Основные тождества постулируются, и из них затем могут быть выведе- выведены как следствия другие тождества. Рассмотрим некоторые из них.

Напомним, что аддитивная группа кольца коммутативна и в ней определена операция вычитания .

Теорема 2.8. В любом кольце выполняются следующие тождества:

  1. 0 ⋅ а = a ⋅ 0 = 0 ;
  2. (-a) ⋅ b = -(a ⋅ b) = a ⋅ (-b);
  3. (a-b) ⋅ c = a ⋅ c - b ⋅ c, c ⋅ (a-b) = c ⋅ a - c ⋅ b.

◀Докажем тождество 0 ⋅ а = 0 . Запишем для произвольного а:

a+0 ⋅ a = 1 ⋅ a + 0 ⋅ a = (1 +0 ) ⋅ a = 1 ⋅ a = a

Итак, а + 0 ⋅ а = а. Последнее равенство можно рассматривать как уравнение в аддитивной группе кольца относительно неизвестного элемента 0 ⋅ а. Так как в аддитивной группе любое уравнение вида а + х = b имеет единственное решение х=b - а, то 0 ⋅ а = а - а = 0 . Тождество а⋅ 0 = 0 доказывается аналогично.

Докажем теперь тождество - (a ⋅ b) = a ⋅ (-b). Имеем

a ⋅ (-b)+a ⋅ b = a ⋅ ((-b) + b) = a ⋅ 0 = 0 ,

откуда а ⋅ (-b) = -(а ⋅ b). Точно так же можно доказать, что (-a) ⋅ b = -(a ⋅ b).

Докажем третью пару тождеств. Рассмотрим первое из них. С учетом доказанного выше имеем

а ⋅ (b - с) = a ⋅ (b+(-c)) = a ⋅ b + a ⋅ (-c) =a ⋅ b - a ⋅ c,

т.е. тождество справедливо. Второе тождество этой пары доказывается аналогично.

Следствие 2.1 . В любом кольце справедливо тождество (-1 ) ⋅ х = x ⋅ (-1 ) = -x.

◀Указанное следствие вытекает из второго тождества теоремы 2.8 при a = 1 и b = x.

Первые два тождества из доказанных в теореме 2.8 выражают свойство, называемое аннулирующим свойством нуля в кольце. Третья же пара тождеств указанной теоремы выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания. Таким образом, производя вычисления в любом кольце, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Ненулевые элементы а и b кольца R называют делителями нуля , если а ⋅ b = 0 или b ⋅ а = 0 . Пример кольца с делителем нуля дает любое кольцо вычетов по модулю k, если k - составное число. В этом случае произведение по модулю k любых тип, дающих при обычном перемножении число, кратное k, будет равно нулю. Например, в кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку 2 ⨀ 6 3 = 0. Другой пример дает кольцо квадратных матриц фиксированного порядка (не меньшего двух). Например, для матриц второго порядка имеем

При отличных от нуля а и b приведенные матрицы являются делителями нуля.

По умножению кольцо является только моноидом. Поставим вопрос: в каких случаях кольцо по умножению будет группой? Прежде всего заметим, что множество всех элементов кольца, в котором 0 1 , не может образовывать группы по умножению, так как нуль не может иметь обратного. Действительно, если предположить, что такой элемент 0" существует, то, с одной стороны, 0 ⋅ 0" = 0" ⋅ 0 = 1 , а с другой - 0 ⋅ 0" = 0" ⋅ 0 = 0 , откуда 0 = 1. Это противоречит условию 0 1 . Таким образом, поставленный выше вопрос можно уточнить так: в каких случаях множество всех ненулевых элементов кольца образует группу по умножению?

Если в кольце имеются делители нуля, то подмножество всех ненулевых элементов кольца не образует группы по умножению уже хотя бы потому, что это подмножество не замкнуто относительно операции умножения, т.е. существуют ненулевые элементы, произведение которых равно нулю.

Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют телом , коммутативное тело - полем , а группу ненулевых элементов тела (поля) по умножению - мультипликативной группой этого тела (поля ). Согласно определению, поле есть частный случай кольца, в котором операции обладают дополнительными свойствами. Выпишем все свойства, выполнение которых требуется для операций поля. Их еще называют аксиомами поля .

Поле есть алгебра F = (F, +, ⋅, 0, 1), сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

  1. a+(b+c) = (a+b)+c;
  2. a+b = b+a;
  3. a+0 = a;
  4. для каждого а ∈ F существует элемент -а, такой, что a+ (-a) = 0;
  5. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c;
  6. a ⋅ b = b ⋅ a
  7. a ⋅ 1 = 1 ⋅ a = a
  8. для каждого а ∈ F, отличного от 0, существует элемент а -1 , такой, что а ⋅ а -1 = 1;
  9. a ⋅ (b+c) = a ⋅ b + a ⋅ c.

Пример 2.13. а. Алгебра (ℚ, +, ⋅, 0, 1) есть поле, называемое полем рациональных чисел .

б. Алгебры (ℝ , +, ⋅, 0, 1) и (ℂ, +, ⋅, 0, 1) есть поля, называемые полями действительных и комплексных чисел соответственно.

в. Примером тела, не являющегося полем, может служить алгебра кватернионов . #

Итак, мы видим, что известным законам сложения и умножения чисел соответствуют аксиомы поля. Занимаясь числовыми расчетами, мы „работаем в полях", а именно имеем дело преимущественно с полями рациональных и вещественных чисел, иногда „переселяемся" в поле комплексных чисел.

называется порядком элемента а. Если такого n не существует, то элемент а называется элементом бесконечного порядка.

Теорема 2.7 (малая теорема Ферма). Если a G и G конечная группа, то a |G| =e .

Примем без доказательства.

Напомним, что каждая группа G, ° является алгеброй с одной бинарной операцией, для которой выполняются три условия, т.е. указанные аксиомы группы.

Подмножество G 1 множества G с той же операцией, что и в группе, называется подгруппой, если G 1 , ° является группой.

Можно доказать, что непустое подмножество G 1 множества G является подгруппой группы G, ° тогда и только тогда, когда множество G 1 вместе с любыми элементами а и b содержит элемент а° b -1 .

Можно доказать следующую теорему.

Теорема 2.8 . Подгруппа циклической группы является циклической.

§ 7. Алгебра с двумя операциями. Кольцо

Рассмотрим алгебры с двумя бинарными операциями.

Кольцом называется непустое множество R , на котором введены две бинарные операции + и ° , называемые сложением и умножением такие, что:

1) R; + является абелевой группой;

2) умножение ассоциативно, т.е. для a,b,c R: (a ° b ° ) ° c=a ° (b ° c) ;

3) умножение дистрибутивно относительно сложения, т.е. для

a,b,c R: a° (b+c)=(a° b)+(а ° c) и (а +b)° c= (a° c)+(b° c).

Кольцо называется коммутативным, если для a,b R: a ° b=b ° a .

Кольцо записываем как R; +, ° .

Так как R является абелевой (коммутативной) группой относительно сложения, то она имеет аддитивную единицу, которую обозначают через 0 или θ и называют нулем. Аддитивную обратную для a R обозначают через -а. При этом в любом кольце R имеем:

0 +x=x+ 0 =x, x+(-x)=(-x)+x=0 , -(-x)=x.

Тогда получаем, что

x° y=x° (y+ 0 )=x° y+ x° 0 x° 0 =0 для х R; x° y=(х + 0 )° y=x° y+ 0 ° y 0 ° y=0 для y R.

Итак, мы показали, что для х R: x ° 0 = 0° х = 0. Однако из равенства x ° y=0 не следует, что х= 0 или у= 0. Покажем это на примере.

Пример. Рассмотрим множество непрерывных на отрезке функций. Введем для этих функций обычные операции сложения и умножения: f(x)+ ϕ (x) и f(x)· ϕ (x) . Как легко видеть, получим кольцо, которое обозначается C . Рассмотрим функцию f(x) и ϕ (x) , изображенные на рис. 2.3. Тогда получим, что f(x) ≡ / 0 и ϕ (x) ≡ / 0, но f(x)· ϕ (x) ≡0.

Мы доказали, что произведение равно нулю, если равен нулю один из множителей: a ° 0= 0 для a R и на примере показали, что может быть, что a ° b= 0 для a ≠ 0 и b ≠ 0.

Если в кольце R имеем, что a ° b= 0, то а называется левым, а b правым делителями нуля. Элемент 0 считаем тривиальным делителем нуля.

f(x)·ϕ(x)≡0

ϕ (x)

Коммутативное кольцо без делителей нуля, отличных от тривиального делителя нуля, называют целостным кольцом или областью целостности.

Легко видеть, что

0 =x° (y+(-y))=x° y+x° (-y), 0 =(x+(-x))° y=x° y+(-x)° y

и поэтому x ° (-y)=(-x) ° y является обратным элементом для элемента х° у, т.е.

х ° (-у ) = (-х )° у = -(х ° у ).

Аналогично можно показать, что (- х) ° (- у) = х° у.

§ 8. Кольцо с единицей

Если в кольце R существует единица относительно умножения, то эту мультипликативную единицу обозначают через 1.

Легко доказать, что мультипликативная единица (как и аддитивная) единственна. Мультипликативную обратную для a R (обратную по умножению) будем обозначать через а-1 .

Теорема 2.9 . Элементы 0 и 1 являются различными элементами ненулевого кольца R .

Доказательство. Пусть R содержит не только 0. Тогда для a ≠ 0 имеем а° 0= 0 и а° 1= а ≠ 0, откуда следует, что 0 ≠ 1, ибо если бы 0= 1, то и их произведения на а совпадали бы.

Теорема 2.10 . Аддитивная единица, т.е. 0, не имеет мультипликативного обратного.

Доказательство. а° 0= 0° а= 0 ≠ 1 для а R . Таким образом, ненулевое кольцо никогда не будет группой относительно умножения.

Характеристикой кольца R называют наименьшее натуральное число k

такое, что a + a + ... + a = 0 для всех a R . Характеристика кольца

k − раз

записывается k=char R . Если указанного числа k не существует, то полагаем char R= 0.

Пусть Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел; С – множество всех комплексных чисел.

Каждое из множеств Z, Q, R, C с обычными операциями сложения и умножения является кольцом. Эти кольца являются коммутативными, с мультипликативной единицей, равной числу 1. Эти кольца не имеют делителей нуля, следовательно, являются областями целостности. Характеристика каждого из этих колец равна нулю.

Кольцо непрерывных на функций (кольцо C ) тоже является кольцом с мультипликативной единицей, которая совпадает с функцией, тождественно равной единице на . Это кольцо имеет делители нуля, поэтому не является областью целостности и char C= 0.

Рассмотрим ещё один пример. Пусть М - непустое множество и R= 2M - множество всех подмножеств множества М. На R введем две операции: симметрическую разность А+ В= А В (которую назовём сложением) и пересечение (которое назовём умножением). Можно убедиться, что получили

кольцо с единицей; аддитивной единицей этого кольца будет , а мультипликативной единицей кольца будет множество М. Для этого кольца при любом А, А R , имеем: А+ А = А А= . Следовательно, charR = 2.

§ 9. Поле

Полем называется коммутативное кольцо, у которого ненулевые элементы образуют коммутативную группу относительно умножения.

Приведем прямое определение поля, перечисляя все аксиомы.

Поле – это множество P с двумя бинарными операциями «+ » и «° », называемыми сложением и умножением, такими, что:

1) сложение ассоциативно: для a, b, c R: (a+b)+c=a+(b+c) ;

2) существует аддитивная единица: 0 P, что для a P: a+0 =0 +a=a;

3) существует обратный элемент по сложению: для a P (-a) P:

(-a)+a=a+(-a)=0;

4) сложение коммутативно: для a, b P: a+b=b+a ;

(аксиомы 1 – 4 означают, что поле есть абелева группа по сложению);

5) умножение ассоциативно: для a, b, c P: a ° (b ° c)=(a ° b) ° c ;

6) существует мультипликативная единица: 1 P , что для a P:

1 ° a=a° 1 =a;

7) для любого ненулевого элемента (a ≠ 0) существует обратный элемент по умножению: для a P, a ≠ 0, a -1 P: a -1 ° a = a ° a -1 = 1;

8) умножение коммутативно: для a,b P: a ° b=b ° a ;

(аксиомы 5 – 8 означают, что поле без нулевого элемента образует коммутативную группу по умножению);

9) умножение дистрибутивно относительно сложения: для a, b, c P: a° (b+c)=(a° b)+(a° c), (b+c) ° a=(b° a)+(c° a).

Примеры полей:

1) R;+, - поле вещественных чисел;

2) Q;+, - поле рациональных чисел;

3) C;+, - поле комплексных чисел;

4) пусть Р 2 ={0,1}. Определим, что 1 +2 0=0 +2 1=1,

1 +2 1=0, 0 +2 0=0, 1×0=0×1=0×0=0, 1×1=1. Тогда F 2 = P 2 ;+ 2 , является полем и называется двоичной арифметикой.

Теорема 2.11 . Если а ≠ 0, то в поле единственным образом разрешимо уравнение а° х=b .

Доказательство . a° x=b a-1 ° (a° x)=a-1 ° b (a-1 ° a)° x=a-1 ° b

Fsb4000 писал(а):

2. а)делимая абелева группа не имеет максимальных подгрупп

Думаю, хватит уже полных решений, да? Модераторы ведь зароют за то, что я Вам уже две задачи полностью расписал!!! Посему, чтобы их не злить, ограничимся идеями.

Ниже мы везде считаем, что натуральный ряд начинается с единицы.

Предположите, что --- делимая группа и --- максимальная подгруппа в . Рассмотрите

Докажите, что --- подгруппа в , содержащая . В силу максимальности возможны только два случая: или .

Рассмотрите каждый из случаев по отдельности и придите к противоречию. В случае возьмите и докажите, что

есть собственная подгруппа в , содержащая и не равная . В случае зафиксируйте и , такие что и покажите, что

является собственной подгруппой в , содержащей и не совпадающей с .

Добавлено спустя 10 минут 17 секунд:

Fsb4000 писал(а):

б) привести примеры делимых абелевых групп,могут ли они быть конечными?

Самый простой пример --- это . Ну или , --- что Вам больше нравится.

Насчёт конечности... конечно же делимая группа не может быть конечной (за исключением тривиального случая, когда группа состоит из одного нуля). Предположите, что --- конечная группа. Докажите, что для некоторого и всех . Потом возьмите такое и узрите, что уравнение неразрешимо при ненулевом .

Добавлено спустя 9 минут 56 секунд:

Fsb4000 писал(а):

4. Построить пример коммутативного и ассоциативного кольца R ()(), в котором нет максимальных идеалов.

Возьмите абелеву группу . Покажите, что она делимая. Умножение задайте следующим образом:

Покажите, что для выполняется всё, что надо.

Упс!.. А ведь ошибся я тут, похоже. Максимальный идеал есть, он равен . Н-да, надо ещё подумать... Но не буду я сейчас ничего думать, а поеду лучше на работу, в универ. Надо же Вам хоть что-то для самостоятельного решения оставить!

Добавлено спустя 10 минут 29 секунд:

Fsb4000 писал(а):

1.Доказать что произвольное кольцо с единицей содержит максимальный идеал.

по решению: 1. По лемме Цорна выберем минимальный положительный элемент, он и будет порождающим идеал.

Ну... не знаю, что Вы там за минимальный положительный элемент такой придумали. По моему, это полная чушь. Какой Вы там в произвольном кольце "положительный элемент" найдёте, если в этом кольце порядок не задан и непонятно, что там "положительное", а что "отрицательное"...

Но насчёт того, что надо применять лемму Цорна --- это правильная идея. Только применять её надо к множеству собственных идеалов кольца. Берёте это множество, упорядочиваете его обычным отношением включения и показываете, что данное упорядочивание индуктивно. Потом, по лемме Цорна, заключаете, что в этом множестве есть максимальный элемент. Этот максимальный элемент и будет максимальным идеалом!

Когда будете показывать индуктивность, то в качестве верхней грани для цепи собственных идеалов берите их объединение. Оно тоже будет идеалом, а собственным оно окажется потому, что единица в него не войдёт. И вот, кстати, в кольце без единицы доказательство через лемму Цорна не проходит, а всё дело именно в этом моменте

Добавлено спустя 34 минуты 54 секунды:

Alexiii писал(а):

Любое кольцо по определению имеет единицу,так что немыслимо писать "кольцо с единицей". Любое кольцо само по себе идеал кольца и притом,очевидно,максимальный...

Нас учили, что наличие единицы в определение кольца не входит. Так что произвольное кольцо не обязано содержать единицу, а если она в нём всё-таки есть, то сказать про такое кольцо, что оно является "кольцом с единицей", более чем уместно!

Думаю, что порывшись в библиотеке, я найду кучу весьма солидных учебников по алгебре, которые подтверждают мою точку зрения. И в матэнциклопедии написано, что кольцо не обязано единицу иметь. Так что всё в условии задачи у автора темы правильно, нечего на него гнать!

Максимальным идеалом кольца, по определению , называется идеал, максимальный по включению среди собственных идеалов . Об этом не то что во многих, а просто во всех учебниках по алгебре написано, в которых теория колец присутствует. Так что насчёт максимальности у Вас ещё один гон совершенно не по теме!

Добавлено спустя 6 минут 5 секунд:

Alexiii писал(а):

Вообще,как я понял из ваших комментов, "кольца с единицией" пишут только для того,чтобы исключить одноэлементный случай.

Совершенно неправильно поняли! "Кольца с единицей" пишут для того, чтобы обозначить наличие единицы в кольце

А колец без единицы полно. К примеру, множество чётных целых чисел с обычными сложением и умножением образуют такое кольцо.